MultivariateAlterationDetector.cxxΒΆ
Example usage:
./MultivariateAlterationDetector Input/Spot5-Gloucester-before.tif \
Input/Spot5-Gloucester-after.tif \
Output/MADOutput.tif \
Output/mad-input1.png \
Output/mad-input2.png \
Output/mad-output.png
Example source code (MultivariateAlterationDetector.cxx):
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbPrintableImageFilter.h"
// This example illustrates the class
// \doxygen{otb}{MultivariateAlterationChangeDetectorImageFilter},
// which implements the Multivariate Alteration Change Detector
// algorithm \cite{nielsen2007regularized}. This algorihtm allows
// performing change detection from a pair multi-band images, including
// images with different number of bands or modalities. Its output is
// a a multi-band image of change maps, each one being unccorrelated
// with the remaining. The number of bands of the output image is the
// minimum number of bands between the two input images.
//
// The algorithm works as follows. It tries to find two linear
// combinations of bands (one for each input images) which maximize
// correlation, and subtract these two linear combinitation, leading
// to the first change map. Then, it looks for a second set of linear
// combinations which are orthogonal to the first ones, a which
// maximize correlation, and use it as the second change map. This
// process is iterated until no more orthogonal linear combinations
// can be found.
//
// This algorithms has numerous advantages, such as radiometry scaling
// and shifting invariance and absence of parameters, but it can not
// be used on a pair of single band images (in this case the output is
// simply the difference between the two images).
//
// We start by including the corresponding header file.
#include "otbMultivariateAlterationDetectorImageFilter.h"
int main(int argc, char* argv[])
{
if (argc < 6)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile1 inputImageFile2 outIn1Pretty outIn2Pretty outPretty"
<< "outputImageFile" << std::endl;
return -1;
}
// Define the dimension of the images
const unsigned int Dimension = 2;
// We then define the types for the input images and for the
// change image.
typedef unsigned short InputPixelType;
typedef float OutputPixelType;
typedef otb::VectorImage<InputPixelType, Dimension> InputImageType;
typedef otb::VectorImage<OutputPixelType, Dimension> OutputImageType;
// We can now declare the types for the reader. Since the images
// can be vey large, we will force the pipeline to use
// streaming. For this purpose, the file writer will be
// streamed. This is achieved by using the
// \doxygen{otb}{ImageFileWriter} class.
typedef otb::ImageFileReader<InputImageType> ReaderType;
typedef otb::ImageFileWriter<OutputImageType> WriterType;
// This is for rendering in software guide
typedef otb::PrintableImageFilter<InputImageType, InputImageType> InputPrintFilterType;
typedef otb::PrintableImageFilter<OutputImageType, OutputImageType> OutputPrintFilterType;
typedef InputPrintFilterType::OutputImageType VisuImageType;
typedef otb::ImageFileWriter<VisuImageType> VisuWriterType;
// The \doxygen{otb}{MultivariateAlterationDetectorImageFilter} is templated over
// the type of the input images and the type of the generated change
// image.
typedef otb::MultivariateAlterationDetectorImageFilter<InputImageType, OutputImageType> MADFilterType;
// The different elements of the pipeline can now be instantiated.
ReaderType::Pointer reader1 = ReaderType::New();
ReaderType::Pointer reader2 = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
MADFilterType::Pointer madFilter = MADFilterType::New();
const char* inputFilename1 = argv[1];
const char* inputFilename2 = argv[2];
const char* outputFilename = argv[3];
const char* in1pretty = argv[4];
const char* in2pretty = argv[5];
const char* outpretty = argv[6];
// We set the parameters of the different elements of the pipeline.
reader1->SetFileName(inputFilename1);
reader2->SetFileName(inputFilename2);
writer->SetFileName(outputFilename);
// We build the pipeline by plugging all the elements together.
madFilter->SetInput1(reader1->GetOutput());
madFilter->SetInput2(reader2->GetOutput());
writer->SetInput(madFilter->GetOutput());
try
{
// And then we can trigger the pipeline update, as usual.
writer->Update();
}
catch (itk::ExceptionObject& err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}
// Here we generate the figures
InputPrintFilterType::Pointer input1PrintFilter = InputPrintFilterType::New();
InputPrintFilterType::Pointer input2PrintFilter = InputPrintFilterType::New();
OutputPrintFilterType::Pointer outputPrintFilter = OutputPrintFilterType::New();
VisuWriterType::Pointer input1VisuWriter = VisuWriterType::New();
VisuWriterType::Pointer input2VisuWriter = VisuWriterType::New();
VisuWriterType::Pointer outputVisuWriter = VisuWriterType::New();
input1PrintFilter->SetInput(reader1->GetOutput());
input1PrintFilter->SetChannel(3);
input1PrintFilter->SetChannel(2);
input1PrintFilter->SetChannel(1);
input2PrintFilter->SetInput(reader2->GetOutput());
input2PrintFilter->SetChannel(3);
input2PrintFilter->SetChannel(2);
input2PrintFilter->SetChannel(1);
outputPrintFilter->SetInput(madFilter->GetOutput());
outputPrintFilter->SetChannel(3);
outputPrintFilter->SetChannel(2);
outputPrintFilter->SetChannel(1);
input1VisuWriter->SetInput(input1PrintFilter->GetOutput());
input2VisuWriter->SetInput(input2PrintFilter->GetOutput());
outputVisuWriter->SetInput(outputPrintFilter->GetOutput());
input1VisuWriter->SetFileName(in1pretty);
input2VisuWriter->SetFileName(in2pretty);
outputVisuWriter->SetFileName(outpretty);
input1VisuWriter->Update();
input2VisuWriter->Update();
outputVisuWriter->Update();
// Figure \ref{fig:MADCHDET} shows the
// results of Multivariate Alteration Detector applied to a pair of
// SPOT5 images before and after a flooding event.
// \begin{figure}
// \center \includegraphics[width=0.32\textwidth]{mad-input1.eps}
// \includegraphics[width=0.32\textwidth]{mad-input2.eps}
// \includegraphics[width=0.32\textwidth]{mad-output.eps}
// \itkcaption[Multivariate Alteration Detection
// Results]{Result of the Multivariate Alteration Detector results on
// SPOT5 data before and after flooding.} \label{fig:MADCHDET}
// \end{figure}
return EXIT_SUCCESS;
}